
www.manaraa.com

An Overview of Three Commercial Object-Oriented DatabaseManagement Systems: ONTOS, ObjectStore, and O2.Valery Soloviev�The University of Toronto, CanadaAbstractWe present an analysis of three current object-oriented DBMS products: ONTOS, ObjectStore, andO2, as described by their available documentation.The most attractive feature of ONTOS and Object-Store is their use of C++ as a user interface - awidespread object-oriented language.They also pro-vide persistent data implementation, transaction andrecovery mechanisms, and modern application de-velopment tool sets following the recommendationsof [Atkinson et al. 89]. O2 was chosen for a well-developed data type system and end-user interface,and for its reputation from the literature.1 IntroductionThe �eld of object-oriented databases has rapidlyevolved into a major area of database software re-search and development. A number of commercialOODBMS products have been introduced to the mar-ket in last two years. Recent books and paperspresent the current state of both research and com-mercial OODBMSs by comparing them with rela-tional DBMSs and with each other. Very few discusscommercial products, however [Manola 89], [Bancil-hon et al. 90b], [Kim et al. 89], [Zdonik et al. 90].This paper presents an analysis of three currentOODBMS products: ONTOS, ObjectStore, and O2,and is based on available user documentation ([O2Technology 91a], [O2 Technology 91b], [O2 Technol-ogy 91c], [Object Design 90a], [Object Design 90b],[Ontologic 91]). The goal of analysis was to selectone of the systems as a basic tool for software devel-opment. The systems were chosen for their supportof C++ as a user interface (ONTOS, ObjectStore),or for a strong type system, powerful end-user inter-face tools like Look, and detailed description in theliterature (O2).�soloviev@cs.wisc.edu. Present address: Computer Sci-ences Department, University of Wisconsin-Madison, 1210West Dayton St, Madison, WI 53706

The rest of the paper is organized as follows. Sec-tion 2 discusses platforms and architectural features,Section 3 describes user interfaces and tool sets, Sec-tion 4 compares data models with example class de-scriptions, and Section 5 covers data aggregation.Query processing and concurrency control are de-scribed in Sections 6 and 7, Section 8 presents the Ob-jectStore cooperative group model, and �nally Sec-tion 9 summarizes all the systems features in a table.We do not deal with system performance because alack of benchmark results covering all three systemswould make such a comparison too super�cial.2 Platforms and architectureONTOS, Release 2.0, product of Ontologic Inc, sup-ports UNIX, HP/Apollo, and OS/2 (in beta). Ob-ject Store [Lamb et al. 91], from Object Design Inc.was �rst available in 1990. The current Release 1.1has two platforms: UNIX and Windows 3.0. The O2System ([Deux et al. 91], [Bancilhon et al. 90a])product of O2 Technology, France, was released inearly 1991, and operates on Sun workstations. It willbe ported to the HP-9000 and to MIPS processor-based workstations in the future. All three systemshave a client/server architecture.ObjectStore utilizes one server to support manyclient workstations. Each workstation can simultane-ously access multiple databases on many servers, andis it also possible for a server to be resident on thesame machine as a client.An ObjectStore application requires 3 auxiliaryprocesses:� Server. The server handles all access to anObjectStore �le system, including a storage andretrieval of persistent data. A single applicationcan use several databases, including databaseson di�erent �le systems, which are handled bydi�erent servers.� Directory Manager. ObjectStore organizesdatabases into logical directories. Two databases1

www.manaraa.com

in the same directory may be stored on di�erentdisks. The Directory Manager manages a hier-archy of directories, and maintains permissionmodes, creation dates, owners, and groups foreach entry. Each site has one Directory Man-ager and one or more Servers.� Cache Manager. Each node running one ormore ObjectStore applications has a singleCache Manager, which manages each applica-tion's client cache of this node.ObjectStore transfers referenced data by segment orby page across the network to an application cache.Transfer between an application's cache and it's vir-tual memory occurs on the page level.In ONTOS, a client is created by linking the ON-TOS Client Library into a C++ application. Theserver is a process which runs on every node, con-taining a portion of the database called an area . TheBinder performs functions similar to the ObjectStoreDirectory Manager, but cache memory is managedby the server, i. e. there is a server cache instead of aclient cache. A segment is a single unit of disk accessand data transfer.The O2 System has the O2 Engine as its core. Ithas three layers:� The Schema Manager creates and processesclasses, methods, and global names� The Object Manager is responsible for objectidentities, and implements persistence and inher-itance� The Wisconsin Storage System (WiSS) [Chou etal. 85] is a storage system providing �les, ob-jects, and indices plus concurrency control andrecovery services[Deux et al. 91a]On the client, an application and the workstation ver-sion of WiSS form one unique process. The server canservice one or more terminal application processes[Velez et al. 89]. The unit of transfer between theserver and the client is a page, i.e. O2 implements apage server architecture [Deux et al. 91], as well asObjectStore and ONTOS. The server does not needto be able to run user methods for this architecture.O2 used an object server model for a previous ver-sion [DeWitt et al. 90], but the overhead was tooexpensive.3 User interfaces and develop-ment toolsObjectStore o�ers a choice of a C library interface,

a C++ library interface, or a DML preprocessor in-terface.The C library interface and C++ library interface(implemented by the cpp macros facility) preservesthe investment in existing C and C++ applications,and leverages current C or C++ compilers. Howeverthese interfaces give an access only to one of tools -Browser.The DML preprocessor interface reduces theamount of code a user must write and o�ers advancedfeatures such as parameterized types and query ex-pressions. This development is provided a full set oftools: Schema Designer, Browser, and Debugger.ObjectStore provides a low-cost migration paththat allows users to easily:1. convert a C program to a C++ program2. convert C data stored in existing �le systems toan ObjectStore database3. integrate existing applications and libraries writ-ten in C with new ones written in C++Converting a C application to use ObjectStore canbe done easily. In order to make C data structurespersistent 4 steps are required:1. Declare the databasedatabase *current_db2. Open the database and insert transaction bound-ariescurrent_db=database::open(``path/filename'');do_transactions (){<existing C application code>};3. Change references to \malloc" to \new(db)" inthe existing C application code4. Delete the code that reads and writes C datastructures from diskObjectStore manuals provide an example of an appli-cation program, where 134 lines of the C applicationcode are transformed to 48 lines of \C with Object-Store" application code after conversion by deletionof reads and writes. Only 6 lines of 48 are new orchanged.ObjectStore provides the following tools:� Schema Designer: an interactive graphical de-sign tool for developing, viewing, and evolvingclass schemas.2

www.manaraa.com

� Browser: a graphical tool for inspecting the con-tents of the database.� Debugger: the extension of the GNU debugger.ONTOS provides a C++ interface and the ON-TOS SQL interface to application developers. TheONTOS Classify utility is a schema compiler. Itreads C++ class de�nitions contained in C++ header�les and creates a corresponding database schema.The schema can alternatively be created by the ON-TOS DBDesigner tool. The ONTOS cplus utilityis a preprocessor used to compile C++ �les contain-ing implementations of persistent classes. The codeadded by the utility performs initialization requiredfor an object activation and procedure invocation. Allsource �les containing implementations of activationconstructors must be compiled using this utility.ONTOS supports a hierarchy of Type De�nitionClasses , including schema de�nition classes describ-ing each element of the class de�nition and accessmethod iterators. The description of metaclassesallows one to de�ne new classes and use them dy-namically in extensible, interpretive applications. In-stances of these classes, representing user-de�ned ob-jects, are generated automatically by the Classifyutility. Such classes are contained in ONTOS ClassLibrary along with other ONTOS-provided classes,like Object, Iterator, Aggregate and others.The ONTOS SQL interface provides SQL accessto ONTOS interactively and via programs.The ONTOS DBDesigner , a visual interactiveschema designer and database browser, can be usedto design, examine and modify the database schemaand instances, and to create new object classes.The O2 System supports two types of interfaces:the O2 environment - O2 Tools, and language inter-faces (now for C and C++). O2 Tools is a front-endgraphical programming environment, implemented asan O2 application. O2 Tools allows access to O2 util-ities:� The O2 shell provides facilities for dynamic cre-ation and modi�cation of a database schema aswell as creation, compilation, and execution ofCO2 programs. CO2 is an object-oriented ex-tension of the C language for writing O2 appli-cation programs and method bodies. O2 Queryis embedded in CO2, but may also be used inde-pendently as an interactive language.� The browser for a schema and database.� A debugger for the interactive maintenance of ap-plications.

� The interactive mode of O2 Query for monitor-ing of the contents of the database.� O2 Look, an interface generator tool. It isused to visualize, edit, and walk through thedatabase schema and instances, including mul-timedia data.O2 Look is the most powerful graphical tool to dis-play complex objects we evaluated. It was imple-mented using the Motif toolkit. Any O2 object orvalue can be displayed on the screen with O2 usingthe generic editor , which also permits modi�cation todisplayed data. The generic editor associated with anobject is a part of a presentation , which appears in avirtual screen (a resizeable window of the X-Windowsystem). The presentation may be moved around onthe screen, and has buttons to record changes, movethe presentation to the foreground or background, orerase the display.An editor associated with a complex object is com-posed of several subsidiary editors. The tuple edi-tor, for example, which is the most commonly used,may contain any or all of the other editors. Eacheditor supports standard operations such as copying,cut-and-paste and erase. An editor associated withan O2 object contains a menu of standard entries ofdisplaying and printing formats and public methodsof the object. When users select attributes on thescreen they automatically select an editor of the ap-propriate type. There are special editors for charac-ters, booleans, tuples, list, sets, bitmaps, and text,each with unique additional functions and menus. InLook, the object structure is interpreted, so users canedit and rebuilt presentations without code modi�ca-tions. O2 provides a set of primitives to manipulateobject presentations. Primitives may be included in aCO2 application program to describe and manipulatethe Look object presentation.The C and C++ interfaces are implemented withan export/import of classes to/from O2. Applica-tions written in C may use O2 to store their data aspersistent. However, these interfaces are not as seam-less for C++ applications as in ONTOS and Object-Store. For example, in order to use C class Personinto O2 a user must include import from C schemacommand:import ``path/filename'' class Person from C;A number of new C facilities would be availablefor the application from O2 as a result of the importimplementation:� typedef for O2 Person to declare C variables ofthe O2 class Person3

www.manaraa.com

� Person new, Person read, and Person writefunctions to create O2 Person objects, read theminto C structures and write C structures intothemSummarizingour presentation of the user interfacesand tools, we note that the ObjectStore user interfaceis oriented only to application designers, whereas ON-TOS and O2 support interactive database processingas well. However, ObjectStore has special facilities tosupport low-cost migration of old programs.4 Data models and persistenceThe systems use the following terminology for a datadescription:ONTOS ObjectStore O2type class classproperty data member attributeprocedure member function methodONTOS and ObjectStore use C++ Release 2.0 todescribe program data, and extend it by adding fa-cilities to provide object persistence.In ONTOS all persistent objects are instances ofsome persistent classes. A separation of classes forpersistent and transient is made at the level of a classdescription. All persistent classes must be derivedfrom a superclass - the client library class Object. Adatabase schema is de�ned by all persistent classes,each of them has a C++ class description. Classesin ONTOS often are named by types to provide adenotative class description. Types di�er from classesin two aspects.1. Types are denotable, i. e. it is possible to declarea variable as a pointer to a type. Denotabletypes, the representations of classes, enable anapplication to create new types at run-time.2. ONTOS types may have an extension - the col-lection of all instances of the type, which is usefulfor writing queries.Class descriptions are stored in header �les andloaded into a database by the ONTOS classify util-ity. A persistent class description must satisfy thefollowing criteria:1. derivability from the class Object,

2. a special constructor member function (in addi-tion to the usual C++ constructor) must be in-cluded. It is used to search for an object in thedatabase and move it to an application program,3. a get Direct Type member function must be in-cluded to return a pointer to the persistent ob-ject of the class in order to access it from a pro-gram,4. if a class description has a destructor, then aDestroy function must be added to run when anyexceptions are raised,5. if a class description contains an operator new ,then its signature must be identical to that whichis used by ONTOS to allocate memory for anewly allocated object.ONTOS supports object references of two types:direct references implemented as C++ pointers, andabstract references - instances of the ONTOS systemclass Reference. Abstract references allow a user toignore whether an object pointed to by a referenceis in memory or not. The method binding of theclass Reference returns an in-memory pointer to theobject, activating it (reading it from a database) ifnecessary. In general there are three main ways toactivate objects in ONTOS:1. using a system function to activate an object bynameObject* OC_lookup (char* objectName)2. using a system function to activate an object bydirect referenceObject* OC_direct Activate Object(Entity** fieldAddress)3. using an activation via an abstract referenceEntity* Reference::Binding(Entity* context)Abstract references also allow the use of di�er-ent memory management techniques for di�erent in-stances of a class. Each abstract reference is associ-ated with a certain context - an instance of a specialstorage manager based class. When an abstract refer-ence is created or reset to refer to a particular entity,its associated context stores a 32-bit value into thereference. This value denotes the entity. A bindingmethod having a context as its argument allows thecontext to interpret that 32-bit value as a reference4

www.manaraa.com

to the original entity and return a pointer to this en-try. Di�erent contexts may implement di�erent im-plementations of the same 32-bit reference value. Wecan see that abstract references take an extra indi-rection but improve exibility.Object names are organized in directories. Direc-tories themselves are ONTOS objects. The ONTOSsystem lookup function provides searches of names indirectories.ONTOS supports a multiple inheritance as in C++2.0. There are some restrictions, however: 1) virtualpersistent base classes are not allowed, 2) persistentbase classes have to be public, 3) multiply inheritableclasses can not be created dynamically.Here is an example1 of ONTOS class descriptionscontaining three classes:� class Person with �elds Name, Age, and Chil-dren,� Person subclass Employee with �eld Employers,� class Company with �elds Name, Employee.class Person: public Object{private:Char* name;Int age;Reference children;public:Person (Char* name); // 1Person (APL* theAPL); // 2~Person (); // 3virtual Type* get Direct Type (); // 4virtual void Destroy(Boolean aborted=FALSE); // 5virtual void put Object(Boolean deallocate=FALSE); // 6virtual void delete Object(Boolean deallocate=FALSE); // 7Char* Name () { return name }; // 8Int Age () { return age }; // 9Set* Children () { return (Set*)children.Binding (this); }; // 10void Name (Char* new_name){ name=new_name }; // 11void Age (Int years) { age=years }; // 12void Children (Person* new_kid){ ((Set*) children.Binding(this))->Insert(new_kid);}; // 13};1Examples in this paper are intended only to illustratethe general characteristics of syntax in the various system de-scribed, and have not actually been tested on the target sys-tems. As a result, the syntax is not guaranteed to be totallyaccurate or complete.

class Employee: public Person{private:Set* inverse Company.employers employees;public:Employee (Set* Company); // 1Employee (APL* theAPL); // 2~Employee (); // 3virtual Type* get Direct Type (); // 4virtual void Destroy(Boolean aborted=FALSE); // 5};class Company: public Object{private:Char* name;Set* inverse Employee.employees employers;public:Company (Char* name); // 1Company (APL* theAPL); // 2~Company (); // 3virtual Type* get Direct Type (); // 4virtual void Destroy(Boolean aborted=FALSE); // 5virtual void put Object(Boolean deallocate=FALSE); // 6virtual void delete Object(Boolean deallocate=FALSE); // 7};Apart from a normal constructor (1) an ONTOSclass de�nition also takes a special constructor (2)used during activation. (3) is a destructor. (4) and(5) are obligatory special member functions. (6) and(7) are optional member functions to write/delete anobject to/from a database. (8)-(10) are read acces-sors, and (11)-(13) are update accessors for particularproperties. The children property in the class Personis described as an abstract reference, an instance ofclass Reference, that is why we cast it to Set* typein (13). Member functions (6) and (7) are inheritedin the class Employee from the class Person.ObjectStore has no special persistent class. Eachobject can be declared as persistent when it is de-clared. Classes created in an application are addedto the schema during compilation. At run time, if anobject is written to a database then its description isadded to the schema. Schema information is storedin a separate ObjectStore database.A search of persistent objects in the database isdone via navigation from other persistent objects us-ing data member pointers, or via queries performedover persistent collections. A retrieve of an ini-tial persistent object, i. e. an entry point of thedatabase, is accomplished through the use of eitherdatabase roots or persistent variables. The Object-5

www.manaraa.com

Store class database has member functions: create,destroy, open, close. A database root can be cre-ated as a variable of the system class database rootby using the database class member function createroot . Another system function of this class, �nd , re-turns a database entry point. A persistent variabledeclaration with an initializer automatically createsa database root which is the variable name, and ithas the value of the initializer as its initial value.ObjectStore di�ers from ONTOS in that it doesn'trequire constructors in addition to those required byC++, nor does it require object access functions. Ob-jectStore also provides global overloaded persistentNew and Delete functions.Both ONTOS and ObjectStore support an inversedata member concept inherited from Vbase [Andrewset al. 87]. Data members can be declared as inversesof one another. Inverses model bidirectional links,and support referential integrity in an easy way.Our example takes the following form in Object-Store:extern database *db1class person{public:persistent <db1> set <person*> extent;char* name indexable;int age;set <person*> children;person (char* person_name, int years,set <person*> kids){name=person.name; age=years;children=kids;extent.insert((person*)this);};~person () {extent.remove (this)}}class employee{public:set <company*> employersinverse-member employees;}class company{public:char* name;set <employee*> employeesinverse-member employers;} The Person name is indexable. This facility is pro-vided explicitly in ObjectStore and in O2 System.ONTOS allows indexes only on aggregate classes.Member functions consist of a constructor and de-

structor. They use insert () and remove () functionsto add/delete a new object to/from a repository, im-plemented in our example with the variable namedextent . The extent of a class is a collection contain-ing pointers to all its instances. It is described asa persistent data member. Persistent data membersare a special kind of persistent storage. Class extentsare used often as database entry points.In the O2 System a database schema is describedusing O2 shell commands. A data model is based onthree fundamental ideas - a value, object, and name.Values are entities of O2. Values can be atomic orhave a complex structure and can be grouped intotypes. Complex values are represented by tuples,lists, sets, and their compositions. An object hasa value, identity, and a set of methods. If a valueacquires an identity and a set of methods, and is in-cluded into a class, then it is transformed into an ob-ject, i. e. the value is encapsulated by the class. Anobject itself is a pointer to access the encapsulatedvalue. An object and a value can be made persis-tent by executing the name instruction. Since wholeclasses or separate objects can be declared persistent,the speci�cation of persistence is as exible as in Ob-jectStore. The separation of objects and values al-lows construction of data structures both inside andoutside of the class system. Named values allow, inparticular, creation of a set of values as a repositoryfor all or some objects of a particular class.O2 provides an interactive style of a schema cre-ation. Users can interactively add applications,classes, methods, attributes, names (either for classobjects or for instances of types), and programs.They can also bind arguments to methods, de�nebodies of a method with CO2 instructions, deleteclasses, methods, and instances, and make class at-tributes and methods private or public dynamically.They can run application programs and execute CO2instructions. O2 programs are grouped by applica-tions (named groups of programs) and are relatedto a particular database. A user can launch sepa-rate programs, or complete applications using the O2shell.A method body is implemented using the CO2programming language. Since the actual choice ofmethod (called binding) is done at run time, theschema of methods may be changed at any time with-out recompiling existing methods. Method version-ing is allowed, and the rename command can choosea method version.The O2 type system supports multiple inheritance.The common subclass can either de�ne its own im-plementation of an ambiguous method (overwriting),or it can specify which superclass to inherit a method6

www.manaraa.com

from with the from quali�er .Obligatory constructors and destructors, used inC++, are missing among O2 methods. Object ini-tialization is the responsibility of the user describ-ing the class. Adding and deleting objects to/fromthe database is done with the add/delete name com-mands. Late binding allows dynamic addition of newmethods.Our example in O2:add class Persontype tuple (name: string,age: int,children: set (Person));method init (): person in class Personis public; //1public read name, read age, readchildren in class Person;public write name, write age, writechildren in class Person;add class Employeeinherits Persontype tuple (employer: set (Company));public * in class Employee;add class Companytype tuple (name: string,employers: set (Employee));public * in class Company;add name The_persons: set (Person); //2add name The_employees: set (Employee); //3add name The_parts: set (Company); //4execute CO2 { The_persons=set ();}$;execute CO2 { The_employees=set ();}$;execute CO2 { The_parts=set ();}$;body init (): Person in classPerson CO2{ //5O2 Person new_person; //6The_persons += set (new_person); //7return (new_person); //8}$;(1) is an initialization method signature. Its body(5)-(8) is described using CO2 instructions. Eachof the classes Employee and Company includes thepublic* instruction, which makes its structure public.The attributes of the class Person are rendered publicby the public write command.In addition to the three classes, there are threenamed values (2)-(4), one corresponding to each class.The named values are used as repositories for the

objects of the classes. Moreover, objects which aremembers of these named sets are persistent.5 AggregatesEach of the systems provide ample opportunities todevelop data aggregates.In ONTOS the aggregates are represented by thepersistent class aggregate and its derived classes: set,list , and association. The last one itself has sub-classes array and dictionary . The aggregate classde�nes some common properties for all subclasses:1) memberSpec, which return a type of the aggre-gate, and 2) cardinality , returning the number ofobjects. Aggregates also specify a number of proce-dures: isMember, isSubSet, checkMemberSpec, getIt-erator, getClusterSize, putCluster . Each of the aggre-gates de�nes an isSimilar procedure, which checks ifthe members of two Aggregates are of the same classand are organized in the same way. The aggregatefunctions generally apply to a particular member orthe entire aggregate. Functions for individual mem-bers include Insert, setMember, Remove, the [] getmember operator , and isMember .Each of the leaf aggregate classes - list, array, dic-tionary, set - has an associated nonpersistent auxil-iary iterator class. Iterators query aggregates sequen-tially, usually over a user de�ned range. All aggregateiterators follow a similar protocol. Each of them de-�nes a constructor, a Reset function, a moreDatafunction, and a () operator, returning the aggregateelements one by one. An iterator enables access toall or a speci�ed subset of the aggregate elements.The functions copy and activation handle entireaggregates. The copy constructor is de�ned for eachaggregate class. Inactive elements are not copied bythe copy constructor. That is why the copy construc-tor is more e�cient for making copies than iteratingover the aggregate and inserting the elements into anew aggregate one by one.The set class is implemented with linear hashing toallow for growth in the number of set elements. Thereare insert and delete functions, the SetIterator class,a copy constructor, isSimilar, isSubSet , and deacti-vation functions putObject, putCluster . The set offunctions is modest, but can be expanded very easy.The list class has the ListIterator, insertion, updat-ing, removal of elements and other function, speci�edin the class aggregate. Why was the Iterator is in-troduced? The e�ciency of a for loop would havebeen far worse because it would have required start-ing from beginning of a list for each loop iteration.The reason is the C++ for loop does not know inter-7

www.manaraa.com

nals of the list object.Associations - the array and dictionary classes - areclasses whose every member is associated with a keyor an index. Array indexes cover a continuous rangeof integers. Arrays can be resized by specifying newbounds. Dictionaries may be ordered or unorderedand may or may not allow duplicates. Ordered dic-tionaries use B* tree access structures. Unordereddictionaries use a linear hashing algorithm.ObjectStore provides three aggregate classes,called collections: Set, Bag, and List . The func-tions insert and delete are supported for Set and Bagclasses. The ObjectStore foreach loop operator wasadded to C++ to search elements instead of the it-erators in ONTOS. Elements of sets and bags are re-stricted to pointer types only for the current release.The classes Set and Bag are parameterized with thetypes of their elements. The parameterized classes ofObjectStore have been approved as an ANSI draftstandard version for a future C++ release.The classes Set and Bag have four constructors:� empty collection constructor� copy constructor� conversion constructor to transform a set into abag and visa versa� singleton constructor to create a collection withone speci�ed valueThe classes Set and Bag de�ne a number of set-theoretical operations like a union, di�erence, inter-section, and many others. Sets and bags can be mixedin these operations. Arguments may also be not onlycollections, but elements as well.ObjectStore provides a variety of ways to controliteration order by describing a path expression ondata members. Class instances are processed in or-der of the data member values. The data membersmentioned in the path expression must be declaredas indexable.Updates performed within an iteration to the datamember controlling the iteration order are dangerous.For example, if values of a data member, de�ning anaccess path of a foreach loop, are changed in the loopbody, these values could be visited again. The sameproblem exists in ONTOS as well.Adding or deleting indexable declaration forces arecompilation of the class declarations and a reorga-nization of all existing persistent objects too.If the foreach loop doesn't provide su�cient con-trol over the iteration process for some applications,ObjectStore supports access to elements of collectionsusing a cursor facility. The cursor class includes

member functions to create and move cursors, andretrieve an element by cursor. Cursors provide muchmore elaborate and exible ways to retrieve elementsof collections than does the foreach loop.The O2 System supports three structured types:sets, lists, and tuples. The speci�cation of a classcontains three parts: the identi�er of the class, thetype speci�cation, and a list of methods. A usageof the tuple type as the type speci�cation makes thedescription of class attributes very convenient.The most important set operations in O2 are:� union, intersection, and di�erence� addition, removal, and membership testing of el-ements� �lters - an extraction of a subset speci�ed by acondition� conversion of a list to a set� iteration: for i in X finstructiong, where thevariable i must be of the same type as the ele-ments of X. A when modi�er may optionally beadded to restrict the iterations to a subset of XSome interesting list operations are:� concatenation� append� testing membership� extracting and modifying elements� extracting a sublist� �lters� conversion of a set to a listLists, sets, and tuples can be integrated into morecomplex structures by arbitrary composition.6 Query FacilitiesAn ONTOS user can write queries using C++ orObject SQL. The ONTOS C++ interface supportsthe Instance Iterator class which de�nes an iteratorthat yields all the instances of a given type. The us-age of the instance iterator is possible only if the classis described as a type, that is it has an extension. TheIterator class is abstract (i. e. without instances) non-persistent ONTOS class, having a few derived classes- Array Iterator, Instance Iterator and others.The ONTOS lookup function, allocated in the it-erator body, activates a named object. Consecutive8

www.manaraa.com

executions of the iterator in the loop body return allinstances of the given class. The search is performedby name on the hierarchical directory.Object SQL is implemented with a single classcalled Query Iterator , which allows queries to bestored as objects in the database. Each instance ofthis class represents a particular query. The results ofthe query are obtained by calling the yieldRow mem-ber function. Each call returns the next row of re-sults, like a FETCH statement of a relational SQL. Aquery has a usual "SELECT . . .FROM . . .WHERE"form. Query iterators support recursive and hierar-chical queries. The FROM clause in Object SQL ac-cepts any argument that evaluates to a collection ofobjects in addition to class names. The SELECTclause accepts property names as well as memberfunction invocations and navigational-style property-chain expressions, like person.children.children.agefor the grandchildren's age of our class Person.An example of an Object SQL query using ONTOSC++ notation:Entity *current_nameQueryIterator query=("Select Children.nameFrom EmployeeWhere Employers="Ford");while (Query.more Data ()){ Query.yieldRow (current_name)<process data>}Indexes in ONTOS are created with AssociationConstructor at compile time and can't be created ordestroyed dynamically.ObjectStore provides data navigation with stan-dard C++ facilities, expanding them with an associa-tive data processing facility - a DML query expres-sion. The query expression has a formexpression 1 [:expression 2:]where the expression 1 is a collection and the ex-pression 2 bounds selected elements. Queries maybe nested. Queries can process Bag and Set classes,but queries involving List class instances are not sup-ported by the ObjectStore release 1.1.A C++ loop could express the identical actions ex-ecuted by the query expression, but the introductionof a special construction for queries improves opti-mization opportunities. A user can inuence opti-mization with dynamic creation and deletion of in-dexes. The creation of an index on a complex path,i. e. on the path over a few layers of a data hierarchy,involves the creation and maintenance of indexes oneach layer. The indexes are implemented with hash

tables for unordered indexes, and with B-trees forrange queries.An example of a query in ObjectStore isset <employee> selected_employee=employee[:employer="Ford":]This query expression doesn't provide a selectionof children's names. The user has to yield them byprocessing selected employee in his C++ program,or can use a foreach iterator with a variable a path asa parameter, where a path de�nes a path of length 2a_path = pathof (employee*, children->name);The O2 System provides the CO2 language,an object-oriented extension of C, to describe bothmethods and queries. The O2 query language [O2Technology 91c] may be used to write associativequeries in CO2 programs as well. A query has anSQL-like formselect arg 1 from arg 2 inset or list namewhere conditionA query in CO2 always returns either a set value ora list value, and therefore it can be treated as a setor list value in the CO2 program or method. O2queries may be integrated into CO2 or may be usedautonomously as an interactive language. Only O2supports queries against heterogeneous collections in-cluding lists and sets together.In the O2 query language our example is:select tuple (e.children.name)from e in Employeewhere "Ford" in e.employers7 Transaction models and con-currency controlO2 supports conventional transactions and performsconcurrency control with a two-phase locking pro-tocol on �les and pages. Concurrent access to ob-jects is handled by WiSS used as the low-level Ob-ject Manager layer [Velez et al. 89]. However, anapplication can not run more than one transactionat any particular time. The CO2 language includesonly commit and abort commands for transactions.Restarts, checkpoints, and nested transactions arenot provided.Both ONTOS and ObjectStore provide a numberof options to support a concurrent application execu-tion. ObjectStore supports conventional transac-tions , including nested transactions , and long trans-actions .9

www.manaraa.com

Conventional transactions may be described in oneof three ways:� transaction statement - for applications usingDML� cpp macros - for applications using only theC++ library interface� the above methods describe only static, lexicaltransactions. For dynamic transaction bound-aries member functions transaction::begin () andtransaction::commit () of the ObjectStore trans-action class are usedThe transaction ::abort () function, executedwithin nested transactions, provides a way to abortthe innermost transaction or the outermost one.However, no locks are released until the outermosttransaction is terminated. Lexical transactions ex-ecute redo after system aborts, but dynamic trans-actions do not. Read-Only transactions may be de-clared to increase performance. Long transactionsare used for no-conict concurrency control to sup-port the cooperative group model.ONTOS implements both conservative (conven-tional) and optimistic concurrency control. With anoptimistic policy readers and writers do not conict,but it increases the risk of a preemptive transactionabort compare with a more conservative policy. Theoptimistic policy allows a read lock to be set on anobject that already has a write lock if the conictingtransactions can be serialized (as if one transactionoccurs entirely after another). The ONTOS transac-tionCheckpoint function can be used to provide ad-ditional points of time to serialize transactions. ON-TOS supports two lock-resolution options: waitinguntil the lock is relinquished or conict noti�cation.The ONTOS bu�ering policy allows:� no bu�ering (immediate write)� write is performed after about ten put operations(the default policy)� write is performed either when the transaction iscommitted or the bu�er is fullCache cleanup functions may be executed after thecommit of one transaction and before the start ofanother one. The options for a cache cleanup are:� all objects are deallocated� no cache cleanup� objects are maintained in a form to be used bya following transaction

� selective cache refresh to reread only modi�edobjectsONTOS also has a nested transaction facility thatis analogous to ObjectStore.8 ObjectStore CooperativeGroup ModelToday, with increasing application design complex-ity, it is important that application team membersbe able to create new objects or new object versionswithout overwriting someone else's work, as well aspreventing new versions from use by others. In addi-tion we would like to keep our temporary versions asprivate.ObjectStore proposes very attractive facilities toprovide cooperative group work . This feature is no-tably absent in the other systems. A user can checkout groups of objects, make changes, and checksthem back in to the main development branch. Thechanges may be visible to other team members. Thecooperative group work supports con�gurations ofobjects that are treated as a single versioned unit,workspaces as environments for access and updateof versioned object con�gurations, and no-conictconcurrency control . The same application can ac-cess both versioned and nonversioned instances ofthe same type. The virtual memory mapping archi-tecture allows no penalty for access to non-versioneddata.The new operation has a con�guration argumentto allocate a new object into a con�guration. Groupsof objects can be placed into a single con�gurationand treated as a single unit for versioning. The con-�gurations may be nested.A user designates a workspace to control access toversioned data in con�gurations via an argument ofdo transaction. Workspaces are created to performa set of tasks. Multiple users can selectively controlaccess to each other's work in progress through theuse of nested workspaces. If a user has a workspaceand con�guration, he can check out the con�gurationinto the workspace to work on it. It creates a newversion, but the version is visible only from the user'sprivate workspace. Transactions always operate inthe context of the current workspace. When the workis done, the user checks in the con�guration to makethe new version visible in the parent workspace toother team members.A versioned object can be changed only if its con-�guration is checked out. Checking out freezes theold version of every object in the con�guration. But10

www.manaraa.com

Features ObjectStore ONTOS O2page server architecture + + +SQL-like interface - + +graphical schema designer + + +graphical browser + + +graphical data editor - + +debugger + - +C++ interface + + +easiness of existing C and C++ program migration + - -persistence at the level of objects rather then at the class level + - +metaclass support - + -indexing + +2 +inverse data members + + -explicit object deletion instead of garbage collection + + +dynamic adding new classes - + +data aggregate support + + +query optimization (simplistic) + - -conventional transaction + + +nested transactions + + -long transactions + - -optimistic transactions - + -fault recovery + + +cooperative group model + - -Figure 1: Features of ObjectStore, ONTOS, and O2the workspace hierarchy is a dynamic structure, de-scribing how users share the data of the con�gurationhierarchy.No-conict concurrency control is appropriatebecause users have private versions of con�gura-tions. Privately checked out versions are guaranteedconict-free: they will never interfere.9 ConclusionEach of the systems discussed has a modernclient/server architecture and o�er a number of in-terfaces and tools for object-oriented application de-velopment.We summarize particular system features in theFigure 1.10 AcknowledgmentsI am grateful to Alberto Mendelzon for starting me onthe line of research presented here, to David DeWittand Kurt Brown for their helpful comments on earlierdrafts.2ONTOS supports only static indexes for associations.

References[Andrews et al. 87] T. Andrews, C. Harris. "Com-bining Language and Data-base Advances in an Object-Oriented Development Envi-ronment", Proceedings of the2nd OOPSLA , 1987, 430-440.[Atkinson et al. 89] M. Atkinson, F. Bancilhon,D. DeWitt, K. Dittrich, D.Mayer, S. Zdonik. "The Ob-ject-Oriented Database Sys-tem Manifesto", Proceedingsof the 1st Intl. Conf. on De-ductive and Object-OrientedDatabases, Kyoto, Japan, De-cember 1989, 40-57.[Bancilhon et al. 90a] F. Bancilhon, P. Bridon, M.James. "The O2 Object-ori-ented DBMS", Rapport Tech-nique, Altair 58-90, October1990.[Bancilhon et al. 90b] F. Bancilhon, W. Kim. "Ob-ject-Oriented Database Sys-tems: In Transitions", SIG-11

www.manaraa.com

MOD RECORD , 19(4) De-cember 1990, 49-53.[Chou et al. 85] H.-T. Chou, D. DeWitt, R.Katz, A. Klug. "Design andImplementation of the Wis-consin Storage System", Soft-ware - Practice and Experi-ence, 15(10), October 1985.[Deux et al. 91] O. Deux et al. \The O2 Sys-tem", CACM, 34(10) October1991, 34-48.[DeWitt et al. 90] D. DeWitt, P. Futtersack, D.Maier, F. Velez. \A Studyof Three Alternative Work-station - Server Architecturesfor Object Oriented DatabaseSystems", Proceedings of the16th VLDB Conf., 1990, 107-121.[Kim et al. 89] W. Kim, F. Lochovsky (eds.)."Object-Oriented Concepts,Databases, and Applications",Addison-Wesley (ACM Press), 1989.[Lamb et al. 91] C. Lamb, G. Landis, J. Oren-stein, D. Weinreb. \The Ob-jectStore Database System",CACM, 34(10) October 1991,50-63.[Manola 89] F. Manola. "An Evaluationof Object-Oriented DBMS De-velopments", GTE Laborato-ries, Technical Report TR-0066-10-89-165, October 31,1989.[Object Design 90a] Object Design Inc. "Object-Store User Guide", Release1.0, October 1990.[Object Design 90b] Object Design Inc. "Object-Store Reference Manual", Re-lease 1.0, October 1990.[Ontologic 91] Ontologic Inc. ONTOS De-veloper's Guide", Version 2.0,February 1991.[O2 Technology 91a] O2 Technology. \The O2 Us-er's Guide", Version 2.2, May1991.

[O2 Technology 91b] O2 Technology. \The O2 Ap-plication Designer's Manual",Version 2.2, May 1991.[O2 Technology 91c] O2 Technology. \The O2 Pro-grammer's Manual", Version2.2, May 1991.[Velez et al. 89] F. Velez, G. Bernard, V.Darnis. "The O2 Manager:an Overview", Proceedings of15th VLDB, 1989, 357-366.[Zdonik et al. 90] S.B. Zdonik, D. Maier (eds.)."Readings in Object-OrientedDatabase Systems", MorganKaufmann Publishers, 1990.

12

